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RESONANCE PROPERTIES OF VAPOR BUBBLES* 

N.S. KHABEEV 

Vapor bubbles in a fluid experiencing radial pulsations createdbyanacoustic field 
are considered. It is shown that the resonance frequency of large vapor bubbles 
Practically coincides with the eigenfrequency of adiabatic gas bubbles as determin- 
ed by the Minnaert formula, while in the case of small vapor bubbles, the presence 
of capillary effects and phase transitions leads to a new resonance frequency that 
differs from the Minnaert frequency. A simple analytic formula is obtained that 
relates the resonance frequency of a vapor bubble and its radius; the formula isin 
good agreement with the results of a numerical solution of the problem. Ranges of 
dimensions of bubbles, and frequencies of the acoustic field are given,withinwhich 
different approximations of the relation between resonance frequency and b*ubble 
radius hold true. Numerical computations of the resonance frequency based on the 
radius of a vapor bubble and resonance dimension of a bubble based on field frequ- 
ency are presented. It is shown that there exists two resonance frequencies and 
two resonance dimensions of a vapor bubble within some rangeofdimensionofbubbles 
and acoustic field frequencies. It has also been found /1,2/ that the dynamics of 
vapor bubbles in an acoustic field reveal the existance of two resonance dimensions 
of the bubbles. The existence of a new resonance frequency for vapor bilSble dif- 
ferent from t.heMinnaertfrequency /3/ has also been established /l/. 

The resonance properties of homogeneous, equilibrium vapor bubbles has been 
previously reviewed /4/, though the resonance frequencies of bubbles were not deter- 
mined entirely correctly. An attempt has been made /5/ to analytically determine 
the resonance dimensions of vapor bubbles and to physically explain the nature of 
the second resonance. However, since surface tension was ignored and other inac- 

curacies were made, an incorrect formula was derived in the latter article whLch 
did not describe the actual values of the resonance dimensions of vapor b,&blcs, 
for example, in versions previously considered /1,2/. 

1. Oscillations of vapor bubbles in an acoustic field. The formulation of the 

problemofspherically symmetric processes around steam and gas bubbles has been Previously set 
forth /6/. A system of equations that describe oscillations of a nonequilibrium, thermally - 

inhomogeneous, homobaric vapor bubble in a viscous fluid has been previously presented /7/. 

Within the framework of a linear representation, analytic solutions have been obtained /l,' for 

the free and constrained oscillations of bubbles. We will use this solution to study the r-e- 

sonance properties of steam bubbles. 
We assume the pressure amplitude of the acoustic field PA and the frequency OJ are small 

by comparison with the static pressure in the fluid I'& 

p(m)== p_ k p,@‘OL, pa -=g pa i : 1 \L.ll 

In this case, the radius of the bubble may be described by the real par: cf the expres- 

where a is a complex number, 1~ I<.l. In a case of vapor bubbles in an incompressible fiuL<l, 

the previously obtained solution /l/ has the form 

0L == paiS, S = p,w'ltO' -: 2n;li0 -- /tiopc - 3!Q il. (1 

l- luJuc(I--X) + I, (I -I EZ I' ‘)j/(Oll,,?) 
(1 = - ., 1. .;: 

~/'a+""~~"o[UGx-h(l+E;5")~,3 
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Here Sis a resonance function; QF compressibility of a bubble; y, adiabatic index of 

vapor; pI density; I, specific heat of steam formatian; pt 0, h, Coefficients of viscosity, 
surface tension, and thennoconductivity, respectively; and cp heat capacity of steam at con- 

stzlnt pressure. Ts(p) is the saturation temperature, and the subscripts "I" and N c 11 refer 
to the liquid and steam parameters, respectively, while the subscript "0" refers toparameters 
in the equilibrium state. In the notation of (1.3), it is assumed that steam is described by 

the simplest equation of stats of an ideal gas. By analyzing (1.3) we obtain 

where $j is the phase shift between the oscillations of the bubble radius and pressure atinfin- 
ity. Lf u=o. 

p,l" s==+-, 
V- !‘A 

lim/a+=w 
i 6Fe 

From 11,5), it follows that if o#Q, there exists at least one bubble dimension at any 
finite frequency, such that f a iattains its maximal value. This shows incompetence of the 

results /4/, according to which there are no resonance vapos bubbles in the case of high 

enough frequencies of the acoustic field. 
From an analysis of (1.3), it is clear that when there are no phase transformations, 

Note that in /8/ it has been found that in the case of a gas bubble of constant mass, 

These relations, as well as the existence of two resonance dimensions of gas bubbles /8/, 
are valid only at artificially established pressures in bubbles; 

p* = “,, -+ “a/R, = const 

But in that case the static pressure in the fluid pnr,must decrease with decreasing I?,), 
and become negative in the case of small bubbles (in water if &<I pm). In this case,this 

type of qresonancen is realized with negative pressures in a fluid p,z -2p,, which is, for 
al1 Practical purposes, impossible to achieve. 

The expression for the compressibility of a bubble (1.4) may be appreciably simplified 
if it is taken into account that the estimate 

O<G<l, O<v,<I, x:-l, E>l, op,,e,kjltiEEZlj2[!PO~lI ;I? l-zgk 11 -j-E%‘*/ Cl-61 

are valid in the case of most substances over a broad range of varying parameters. 
The physical meaning of the last inequality is that where there are phase shifts, the in- 

ternal heat problem is largely unimportant. After simplifications, we obtain 

Q = IZ + k (1 -t EZ’. x)liypoZ 
Let us consider the case 

lZl>k, I Z 1 >> kE 1 Z”lj 

If the estimate (1.6) holds true, the last of the latter inequalities is stronger and 
when it holds, i.e., when 

R, > ka, (a,~)-“* (1.7) 

the expression for the resonance function has the form 

s = p$&?,~ +2aiRo - 4ioy! - 3lfp* fi - kEZ-'.'*) 

The resonance frequency is found by solving the equation 

11-B) 

and proof of the condition 
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c)z I .s ( li1w2 ;. 0 1. io 

Conditlor. (1.7) assumes that the bilbbles are coarse enough and that the I:iflue:,cP 
thermal- and mass-exchange processes on their dynamics is slight; therefore, iv': _ ? ;1:,;,. .;e : I 
equation (1.9) in the form 

w -. 111,, fl -L F). I I / 4. 1, Cd0 (3ypo p;)’ ?I(“-’ I 1. . 1 i : 

where 00 is the eiqenfrequency of an adiabatic gas blubble subjected to radidi osclllatlons if: 

an ideal fluid /3/. Substituting (1.11) in (1.9) and using the fact that F is small, al o:,C: 
with the capillary and viscous effects, we obtain 

The correction found for the resonance frequency of large vapor bubbles describes the 

influence of thermal- and mass-exchange processes on bubble dynamics. Naturally, the correct- 
ion increases with decreasinq m,. 

Analogously, if condition (1.7) is satisfied, we may obtain a formula for the resonance: 
dimension of vapor bubbles oscillating at sufficiently low frequencies of an acoustic field. 

For this purpose, we solve the equatior: 

d 1 .9 I ;d/:, 7 0 CI.iii 

and solution is found in the form 

R. y=- H,,! (I 1- 6), i 6 1 Q, 1. H,, = m- (qJp.,.Jpf)‘:~ 

Substituting (1.8) in (1. 13) and using the fact that fj is small, we obtai:: 

(1.14: 

Let us estimate the range of bubble dimensions and frequencies of the acousticfleld,such 

that the resonance frequencies and dimensions of the bubbles are determined by our relations. 

Note here that the conditions 

4w/l, < :3yp_, 2olRo (( 3ypm (1.16) 

for actual fluids is usually known to bc sti. 'isfied whenever (1.7) is satisfied. Substituting 

(1.11) and (1.14) into (1.7!, we obtain 

Rb:))liu,i:::~p,a12!p!)-' '( t0' '~(;(yp.a,~p:)",:(kc,l 

In the case of water, if p. cl.1 MT, these estimates yicid 

: 1. . 1 7 I 

R, 3 lo- m. ! = oi2n -< 100 Hz (1.19! 

Substituting (1.12) and (1.15) in (1.8) we may determine the amplitudes ) a ip_/‘p, at the 

resonance frequency (<If,,) and at the resonance dimension (.I/,,): 

1 i ,I) : (:+;I-’ ‘(pR:(),p. (2t,n,)’ :‘(ku,.) (1.13) 

.\Il, -. (2o:p .!(:~yo’p,))‘.“:(ka,.) 

Ir: the other iinitinq case of sJfficicntly small bubbles, in which we have the conditions 

fulfilled 
i % I-‘+ /i 1 1 i- EZ’ ,i. I:‘ I %’ :I >- 1 (l.%O! 

{,:uJ’R,? s-c; 20/H". 4wp, <z:, AN@J)l ? 

the expression for the resonance function has the form 

s "CT /I,, -- A How"> (4 I). A I*!, “2 (0 ,:2)’ ‘.‘(k, T,) t1.:‘1: 

The resonate frequency of II vapor bubble has previously /4,5/ been found 3y SOlVlliq the 

equation He(.< / 0. Such an approach for determining the resonance frequency 1s incorrect is 

clear from the fact that in addition to the real part nc: (.(') , the imaginary part of the reson- 

ance function is also a function of the bubble radius and frequency of the aco‘LSt,i‘ field; 



Resonance properties of vapor bubbles 515 

however, this approach does not lead to major errors /4/ only in the region of large bubble 

radii and low acoustic field frequencies, at which the Minnaert formula holds true. The same 

inaccuracy in a different article /5/ led to an incorrect formula that related the resonance 

frequency of a bubble to its radius. 
If conditions (1.X! are satisfied, a simple relation may be obtained that relates the 

resonance frequency of a vapor bubble and its radius. Solving equation (1.9) for (1.21), and 

then verifying condition (l.lO), we obtain /9/ 

o = (u:A)~R~- (1.22) 

Note that TO.(,,,.[.and consequently A as well are functions of the equilibrium pressure in 

the bubble pu which varies with varying Roat constant hydrostatic pressure in the fluid pm . 
However, if condition 2o/R,z&p, holds, the dependence A (R,) is weak and we may assume that 

UI - Robl. In this case, by solving equation (1.13) for (1.21), we may determine the dependence 

of the resonance dimension of the bubble on the acoustic field frequency: 

Rf = 2 (~iA)*o-~ (1.23) 

The resulting dependence is not exactly the reverse of (1.22), asitdiffersby anumerical 

coefficient. 

Substituting (1.22) and (1.23) in (1.21), we may determine resonance values of the oscil- 

lation amplitude 1 a 

Fig.1 Fig. 2 
Fig.3 

(1.24) 

Fig.4 

$,m \ \ 
i0- 
\ H ais - -\ 

to-’ 
1 il7* WY f,Hz 

Fig.5 

The existance of two vapor bubble resonances is due to frequency variance, since, unlike 
the case of gas bubbles, the compressibility of small vapor bubbles depends markedly on the 
oscillation frequency. This also explains why a vapor bubble, unlike a gas bubble, oscillates 
at low frequencies in phase with fluid pressure far from the bubble. 

By estimating the range of bubble dimensions and acoustic field frequencies atwhich (1.22) 
and (1.23) hold true, we find that 

10-'m 6 R, < ill-'m. lfl HZ 6 j 4 1W Hz (1.25) 

in the case of water at p, = 0.1 MR. 
The ranges (1.18) and (1.25) overlap. Thus, 

range Of acoustic field frequencies lo-100 Hz, 
in the case of water at p,= o.iMP in the 

two resonance bubble dimensions, as determined 
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by (1.14) and (1.22) obviously exist. In fact, the range of frequencies within which two rc- 
sonance bubble dimensions exist is much broader. 

Fig.1 presents the dependence of the oscillation amplitude lafpjp, and phase fi on the 
bubble radius for the case of bubble oscillations in water at atmospheric pressure. At a frc- 
quency ! =I kHz. In Fig.2 may be found the dependence of the bubble oscillation amplitude 
and phase H, -= 0.13mm in water at p, =: 0.1 MP as a function of the acoustic field frequency. 

Computations demonstrated that there exists only the Minnaert resonance for large va?or 
bubbles in water at p,: 0.1 MP for R, 2 10-a m, while for bubbles with /r,,-: !I!--‘ m, a resonance 
induced by capillary effects and phase transitions. In the intermediate region, there exist 
two weak resonances of low quality, while the resonance due to the capillary effect and phase 
transitians occurs at very low acoustic field frequencies and has a low frequency quality. 

The broken-line curves in Figs. land 2 correspond to the case (J- I?. In this case, the rangeof 
oscillations of the bubble radius increase without bound as the field frequency or dimension 

of the vapor bubbles tends to zero, a result that may be interpreted as a rescnonce. The dot- 
and-dash line curves correspond to the case of a gas bubble. In this case, there 157 no second 
resonance. Computations demonstrated that thought the basic formulas of the present paperare 

obtained assuming certain constraints on the thermophysical parameters cf the system, they re- 

main valid not only for water but also for other fluids, in particular cryogenic fluids over 
a broad range of pressures and temperatures. Fig.3 presents the dependence of the oscillatiorl, 
amplitude and phase on the radius of the steam bubble in the case of fluctuations of thebubble 
radius at a frequency f=lOOkHz in liquid nitrogen held at atmospheric pressure. It rsclcdr 

that two bubble dimensions correspond to a single frequency, and that at 1ow I!, we l-.ave P =IJ. 

Note that if surface tension is taken into account and if we require that the liquititesm 

bubble system be in thermal and mechanical equilibrium in the absence of any acoustic ficitl. 

(and a fixed hydrostatic pressure p, in the liquid), the temperature of the liquid along the 

curves in Figs.1 and 3 will be, strictly speaking, variable, since T, - Ts(po),po :- P,+?u~R~. 
However, the variation in the temperature in, for example, Fig.3 amounts to only l.s"K over 

the interval lo-‘,tO-' m. 

Fig.4 presents the resonance frequency of a vapor bubble in water and liquid nitrogen 

(solid and broken-line curves, respectively) as a function of the bubble radius at p,% = (1.1 MF' 

as computed from (1.3). The two curves have two branches each. The left branchesof the curves 

arise intheregion of low R, only if both capillary effects and phase transitions are taken 

into account. In the interval 10-J m 5 R,<iO-’ m the computed dependences are in good agrce- 

ment with the solution (1.22). The Minnaert resonance exists in the case H,a lo-' m. The 

quality of the Minnaert resonance, which decreases with decreasing R,. 1s less than unity L:: 

the region R,<lW m /lo/. 
In Fig.5 may be found the resonance bubble dimension as a function of fieid frequency li: 

water and liquid nitrogen at I>, --T 0.i MF'. Over a broad range of frequencies, the functior: 

R"(I) is two-valued and both branches of the curve are described easily by formulas (1.14) and 

(1.23). The curves confirm the circumstance noted above the existence of a singie bubble re- 

sonance dimension for every acoustic field frequency. 

2. Free oscillation. In the case of low free oscillations of the steam bubble, the 

bubbleratiiusmay be described by the real part of the expression 

The characteristicequation for this case has been previously found /li. 

In an ideal incompressible fluid at states far from the critical at which ['r ":A 0:. tile 

characteristic equation for the b.ubbles has the form 

II -t- 3yfi'Ifl(t12 - IVY) + M = 0 
(2.1) 

H = hHo2/a,, N = poAO*/(pLaJZ, Z =_: 20/(Rop,) 

411 = xr (1 f EH’i:) -t- 3 (v - I)(1 .- x)*(H’,: cth H’ : - 1) 

Since it is now clear that there exist two resonance bubble dimensions, and two resonance 

frequencies as well in some range of bubble dimensions, we may naturally ask about the number 

of eigenfrequencies of a vapor bubble. Using an independent variable principle, as has been 

done in /ll/, it can be proved that even in the case where there are no phase transitions /12/, 

and where temperature in the bubble is assumed to be nonhomogeneous, the characteristic equa- 

tion (2.1) may be simplified and has the form 

" :- 3y.VH/(H' - ,V,X) +- 3 (y - l)(H'.'Cul If"' .- 1) = 0 (2.2) 

as a result of which the latter equation has an infinite number of roots in thelefthalf-plare 
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(B~N<o). This is because of the periodicityof the cotangent function (which describes the 
temperature distribution in a bubble /1,12/j in formula (2.2). However, it Can be provedthat 
all the roots of equation (2.21, other than the two complex conjugates, are real and much 
greater in absolute value than the real part of the complex root, a result which thereby 
proves the validity of results in previous articles /1,12/, in which the characteristic equa- 
tions were solved numerically, without determining the number and structure of the roots. 

In the case of a homogeneous vapor bubble, equation (2.1) may be reducedtothepolynomial 

re + k&3 -t_ kx’ + (3~ - X)Nx* - kENXx - kNI: = 0 (2.3) 
r = N',? 

From an analysis, it is clear that the latter equation has only a pair of complex conjug- 
ate roots in the left complex half-plane H, i.e., a homogeneous vapor bubblehasonlyasingle 
eiqenfrequency. AlSO, in the case of constrained oscillations for some range of dimensions, 
the range of oscillations of the radius of a homogeneous vapor bubble has a maxima at two 
acoustil: field frequencies. 

In the case of very small vapor bubbles (N<1), equations (2.1) and (2.3) may sometimes 
have real negative roots (H <O). This will indicate that a zero eiqenfrequency corresponds 
to the second resonance that appears in oscillations of small bubbles. 

The author thanks L-1. Sedov and R.I. Niqmatulin for valuable suggestions and interestin 
the work, R.R. Aydaqulov and F.B. Nagiev for their assistance and the computations, and V. V. 
Migulin and V.P. Yushin for useful discussion. 
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